In-class Exercise 3: Anaytical Mapping

Published

January 25, 2023

Modified

March 6, 2023

1 Getting Started

Installing and loading packages

pacman::p_load(tidyverse, sf, tmap)

Importing data

Note

Import NGP_wp.rds created in In-class Exercise 2

NGA_wp <- read_rds("data/rds/NGA_wp.rds")

2 Basic Choropleth Mapping

2.1 Choropleth map of functional water points

p1 <- tm_shape(NGA_wp) +
  tm_fill("wp_functional", n = 10,
          style = "equal",
          palette = "Blues")+
  tm_borders(lwd = 0.1,
             alpha=1) +
  tm_layout(main.title = "Distribution of functional water points by LGA", legend.outside=FALSE)

2.2 Choropleth of total water points

p2 <- tm_shape(NGA_wp) +
  tm_fill("total_wp", n = 10,
          style = "equal",
          palette = "Blues")+
  tm_borders(lwd = 0.1,
             alpha=1) +
  tm_layout(main.title = "Total water points by LGA", legend.outside=FALSE)
tmap_arrange(p2, p1, nrow=1)

3 Choropleth Map - percentage

However, the above 2 maps display the total and functional water points by absolute value. By using the percentage function to view the percentage of functional to total number of water points, we see a dichotomous distribution of water points in Nigeria.

Calculating percentage of functional water points

NGA_wp <- NGA_wp %>%
  mutate(pct_functional = wp_functional/total_wp) %>%
  mutate(pct_nonfunctional = wp_nonfunctional/total_wp)

3.1 Plotting

tm_shape(NGA_wp)+
  tm_fill("pct_functional",
          n=10,
          style="equal",
          palette="Blues",
          legend.hist = TRUE) +
  tm_borders(lwd=0.1,
             alpha=1)+
  tm_layout(main.title="Rate map of functional water points", 
            legend.outside = TRUE)

4 Extreme Values Mapping

Mapping extreme values to highlight the values at the upper and lower scale of the dataset and easily visualise outliers.

4.1 Percentile Map

4.1.1 Data preparation

Step 1: Removing NA values

NGA_wp <- NGA_wp %>% drop_na()

Step 2: Customised classification and extracting values

percent <- c(0,.01,.1,.5,.9,.99,1)
var <- NGA_wp["pct_functional"] %>%
  st_set_geometry(NULL)
quantile(var[,1], percent)
       0%        1%       10%       50%       90%       99%      100% 
0.0000000 0.0000000 0.2169811 0.4791667 0.8611111 1.0000000 1.0000000 

4.1.2 Functions

Mapping functions that simplify the mapping process and reduces the likelihood of mistakes

4.1.3 get.var function

Extracts a variable (i.e. wp_nonfunctional) as a vector out of an sf data.frame.

  • inputs:

    • vname: variable name

    • df: name of the sf data frame

  • output:

    • v: a vector with values
get.var <- function(vname,df){
  v<- df[vname] %>%
    st_set_geometry(NULL)
  v<- unname(v[,1])
  return(v)
}

4.1.4 Percentile function

percentmap <- function(vnam, df, legtitle=NA, mtitle="Percentile Map"){
  percent <- c(0,.01,.1,.5,.9,.99,1)
  var <- get.var(vnam, df)
  bperc <- quantile(var, percent)
  tm_shape(df) +
  tm_polygons() +
  tm_shape(df) +
     tm_fill(vnam,
             title=legtitle,
             breaks=bperc,
             palette="Blues",
          labels=c("< 1%", "1% - 10%", "10% - 50%", "50% - 90%", "90% - 99%", "> 99%"))  +
  tm_borders() +
  tm_layout(main.title = mtitle, 
            title.position = c("right","bottom"))
}

4.1.5 Running or Calling the function

percentmap("total_wp", NGA_wp)

4.2 Box Map

Uses custom breaks specifications which depend on lower or upper outliers.

ggplot(data = NGA_wp,
       aes(x = "",
           y = wp_nonfunctional)) +
  geom_boxplot()

4.3 Boxbreak function

Similarly, functions can be created for custom boxbreaks

  • inputs:

    • v: vector with observations

    • mult: multiplier for IQR

  • output:

    • bb: vector with 7 break points that compute quantile and fence
boxbreaks <- function(v,mult=1.5) {
  qv <- unname(quantile(v))
  iqr <- qv[4] - qv[2]
  upfence <- qv[4] + mult * iqr
  lofence <- qv[2] - mult * iqr
  # initialize break points vector
  bb <- vector(mode="numeric",length=7)
  # logic for lower and upper fences
  if (lofence < qv[1]) {  # no lower outliers
    bb[1] <- lofence
    bb[2] <- floor(qv[1])
  } else {
    bb[2] <- lofence
    bb[1] <- qv[1]
  }
  if (upfence > qv[5]) { # no upper outliers
    bb[7] <- upfence
    bb[6] <- ceiling(qv[5])
  } else {
    bb[6] <- upfence
    bb[7] <- qv[5]
  }
  bb[3:5] <- qv[2:4]
  return(bb)
}

4.4 get.var function

  • inputs:

    • vname: variable name (as character in quotes)

    • df: name of the sf data frame

  • output:

    • v: a vector with values (without column name)
    get.var <- function(vname,df) {
      v <- df[vname] %>% st_set_geometry(NULL)
      v <- unname(v[,1])
      return(v)
    }

4.5 Running the newly created function

var <- get.var("wp_nonfunctional", NGA_wp) 
boxbreaks(var)
[1] -56.5   0.0  14.0  34.0  61.0 131.5 278.0

4.6 Boxmap function

  • arguments:

    • vnam: variable name

    • df: simple feature polygon layer

    • legtitle: legend title

    • mtitle: map title

    • mult: multiplier for IQR

  • output: tmap element that plots the map

boxmap <- function(vnam, df, 
                   legtitle=NA,
                   mtitle="Box Map",
                   mult=1.5){
  var <- get.var(vnam,df)
  bb <- boxbreaks(var)
  tm_shape(df) +
    tm_polygons() +
  tm_shape(df) +
     tm_fill(vnam,title=legtitle,
             breaks=bb,
             palette="Blues",
          labels = c("lower outlier", 
                     "< 25%", 
                     "25% - 50%", 
                     "50% - 75%",
                     "> 75%", 
                     "upper outlier"))  +
  tm_borders() +
  tm_layout(main.title = mtitle, 
            title.position = c("left",
                               "top"))
}
tmap_mode("plot")
boxmap("wp_nonfunctional", NGA_wp)

5 Recode

Recode LGAs with zero total water points to NA.

NGA_wp <- NGA_wp %>%
  mutate(wp_functional = na_if(
    total_wp, total_wp < 0))